Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Complex Variables and Partial Differential Equations
(3130005)
CVPDE-3130005
Cauchy Residue theorem
BE | Semester
3
Topic : Cauchy Residue theorem
BE - Semester -
Summer - 2020
-
27-10-2020
Total Marks :
70
Q3
(b)
Summer-2020
Evaluate using Cauchy’s residue theorem
∫
C
e
2
z
z
+
1
3
d
z
, Where,
C
:
4
x
2
+
9
y
2
=
16
.
4 Marks
Unit : Laurent’s series
Q3
(c)
Summer-2020
Expand
f
z
=
1
z
z
-
1
z
-
2
valid for the region
i
z
<
1
,
ii
1
<
z
<
2
and
i
z
>
2
.
7 Marks
Unit : Laurent’s series