Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Applied Mathematics for Electrical Engineering
(3130908)
AMEE-3130908
Interpolation
BE | Semester
3
Unit : Interpolation
BE - Semester -
Winter - 2019
-
26-11-2019
Total Marks :
70
Q2
(a)
Winter-2019
If
f
(
x
)
=
1
x
, prepare the table for finite differences and hence find
[
a
,
b
]
and
[
a
,
b
,
c
]
.
3 Marks
Unit : Interpolation
Q2
(b)
Winter-2019
State Newton’s forward formula and use it to find the approximate value of f(1.6),
x
1
1.4
1.8
2.2
f
x
3.49
4.82
5.96
6.50
4 Marks
Unit : Interpolation
Q2
(c ( i ))
Winter-2019
Using quadratic Lagrange interpolation, compute
ln
9
.
2
from
ln
9
.
0
=
2
.
1972
,
ln
9
.
5
=
2
.
2513
,
ln
11
=
2
.
3979
.
3 Marks
Unit : Interpolation
Q2
(c ( ii ))
Winter-2019
State Newton’s backward formula and use it to find the approximate value of f(7.5), if
x
3
4
5
6
7
8
f
x
28
65
126
317
344
513
4 Marks
Unit : Interpolation
Q2
(c ( i ))
Winter-2019
Using the relation between the operators, prove that,
(
1
+
∆
)
(
1
-
∇
)
=
1
.
3 Marks
Unit : Interpolation