Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Complex Variables and Partial Differential Equations
(3130005)
CVPDE-3130005
Complex variable functions
BE | Semester
3
Unit : Complex variable functions
BE - Semester -
Winter - 2019
-
26-11-2019
Total Marks :
70
Q1
(a)
Winter-2019
Find the real and imaginary parts of
f
z
=
3
i
2
+
3
i
.
3 Marks
Unit : Complex variable functions
Q1
(a)
Summer-2020
Find the analytic function
f
z
=
u
+
iv
,
if
u
=
x
3
-
3
xy
2
3 Marks
Unit : Complex variable functions
Q1
(b)
Summer-2020
Find the roots of the equation,
z
2
-
5
+
i
z
+
8
+
i
=
0
.
4 Marks
Unit : Complex variable functions
Q1
(b)
Winter-2019
State De-Movire’s formula and hence evaluate
1
+
i
3
100
+
1
-
i
3
100
.
4 Marks
Unit : Complex variable functions
Q1
(c)
Winter-2019
Define harmonic function. Show that
u
x
,
y
=
sinh
x
sin
y
is a harmonic function. Find its harmonic conjugate
v
x
,
y
.
7 Marks
Unit : Complex variable functions
Q1
(c ( i ))
Summer-2020
Determine & sketch the image
|
z
|
=
1
of under the transformation
w
=
z
+
i
.
3 Marks
Unit : Complex variable functions
Q1
(c ( ii ))
Summer-2020
Find the real and imaginary parts of
f
z
=
z
2
+
3
z
.
4 Marks
Unit : Complex variable functions
Q2
(a)
Winter-2019
Determine the Mobius transformation which maps
z
1
=
0
,
z
2
=
1
,
z
3
=
∞
into
,
w
1
=
-
1
,
w
2
=
-
i
,
w
3
=
1
.
3 Marks
Unit : Complex variable functions
Q2
(b)
Winter-2019
Define
log
z
, prove that
i
i
=
e
-
4
n
+
1
π
2
.
4 Marks
Unit : Complex variable functions
Q2
(b)
Summer-2020
Determine the Mobius transformation which maps
z
=
∞
,
i
,
0
into
w
=
0
,
i
,
∞
.
4 Marks
Unit : Complex variable functions
Q2
(c)
Winter-2019
Find the image of the infinite strips
i
1
4
≤
y
≤
1
2
i
0
≤
y
≤
1
2
under the transformation
w
=
1
z
. Show the region graphically.
7 Marks
Unit : Complex variable functions
Q3
(b)
Winter-2019
Check whether the following functions are analytic or not at any point,
f
z
=
3
x
+
y
+
i
3
y
-
x
f
z
=
z
3
2
4 Marks
Unit : Complex variable functions
Q2
(c( i ))
Summer-2020
Find the fourth roots of -1.
4 Marks
Unit : Complex variable functions
Q2
(c ( ii ))
Summer-2020
Find the roots of
log
z
=
i
π
2
.
3 Marks
Unit : Complex variable functions
Q3
(b)
Winter-2019
If
f
z
=
u
+
iv
, is an analytic function,prove that
∂
2
∂
x
2
+
∂
2
∂
y
2
Re
f
z
2
=
2
f
'
z
2
.
4 Marks
Unit : Complex variable functions