Basic Electrical Engineering (3110005)

BE | Semester-1   Winter-2019 | 11-01-2020

Q2) (c)

Derive an expression for the voltage across the capacitor during charging through the resistor at any instant VC = V  1 - e- t RC   . Assume that RC series circuit is connected across a DC supply of voltage V.

Charging of a Capacitor:
Initially, there is no charge on the capacitor. When the switch S is connected to terminal ‘a’ in Fig. 1, the capacitor gets charged
gradually to a potential of V volts.
 
Let t seconds time elapse. Then,
v = instantaneous voltage across the capacitor in volts,
q = charge on the capacitor plates in coulombs
i = charging current in amperes,
 
According to KVL,
 
V = v + i R
 
V = v + dq dt  R
 
V = v + dCv dt  R
 
V = v + C dv dt  R
 
V - v = RC dv dt  
 
dv V - v  = dt RC  
 
Multiplying both sides by -1,
 
- dv V - v  = - dt RC  
 
Integrating both the sides,
 
- dv V - v  = - dt RC  
 
- dv V - v  = -1 RC   dt 
 
log V - v  = -t RC  + K , where K = Constant
 
We know that initially when t=0, v=0
 
logV = 0 + K  = K
 
Hence,
 
log V - v  = -t RC  + logV 
 
log V - v  - logV = -t RC  
 
log V - vV   = -t RC   
 
V - vV = e-t RC     
 
V - v =V ×  e-t RC      
 
v = V  1 -  e-t RC      
 
If RC=λ,then
 
 v = V  1 -  e-t λ