Applied Mathematics for Electrical Engineering (3130908)

BE | Semester-3   Winter-2019 | 26-11-2019

Q4) (b)

State Bayes’ theorem. In a bolt factory, three machines A, B, and C manufacture 25%, 35%, and 40% of the total product respectively. Out Of these outputs 5%, 4%, and 2% respectively are defective bolts. A bolt is picked up at random and found to be defective. What are the Probabilities that it was manufactured by machines A, B, and C?

Bayes’ theorem: Let B1, B2, B3, ... , Bn  be an n-mutually exclusive and exhaustive events of a sample space S and let A be any event such that P(A)0, then
 
P(Bi /A)=P(Bi )·P(A/Bi )  P(B1)·P(A/B1) + P(B2)·P(A/B2) + P(B3)·P(A/B3)+...+P(Bn)·P(A/Bn)  
 
Let, D: Bolt is defective
P(A)=25%=0.25
P(B)=35%=0.35
P(C)=40%=0.4
 
Given that,
P(D/A)=5%=0.05
P(D/B)=4%=0.04
P(D/C)=2%=0.02
 
Then by Baye’s theorem,
 
P(A/D)=P(A)·P(D/A)  P(A)·P(D/A) + P(B)·P(D/B) + P(C)·P(D/C)  
 
P(A/D)=(0.25)(0.05) (0.25)(0.05) + (0.35)(0.04) + (0.40)(0.02) 
 
P(A/D)=0.3623
 
P(B/D)=P(B)·P(D/B)  P(A)·P(D/A) + P(B)·P(D/B) + P(C)·P(D/C)  
 
P(A/D)= (0.35)(0.04)  (0.25)(0.05) + (0.35)(0.04) + (0.40)(0.02) 
 
P(B/D)=0.4058
 
P(C/D)=P(C)·P(D/C)  P(A)·P(D/A) + P(B)·P(D/B) + P(C)·P(D/C)  
 
P(A/D)= (0.40)(0.02)  (0.25)(0.05) + (0.35)(0.04) + (0.40)(0.02) 
 
P(C/D)=0.2319