Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Applied Mathematics for Electrical Engineering
(3130908)
AMEE-3130908
Winter-2019
Question-4a-OR
BE | Semester-
3
Winter-2019
|
26-11-2019
Q4) (a)
3 Marks
Evaluate
∫
0
1
exp
(
-
x
2
)
d
x
by Gauss integration formula with
n
=
3
.
Three Point Gaussian Quadrature Formula,
∫
-
1
1
f
(
x
)
d
x
=
8
9
f
(
0
)
+
5
9
[
f
(
-
3
5
)
+
f
(
3
5
)
]
First we transform the interval [0,1] to [-1,1] by using,
x
=
b
+
a
2
+
b
-
a
2
·
u
Here, a=0,b=1.
x
=
1
+
0
2
+
1
-
0
2
·
u
x
=
1
2
+
u
2
⇒
dx
=
du
2
Therefore,
∫
0
1
e
-
x
2
d
x
=
∫
-
1
1
e
-
u
+
1
2
2
d
u
2
∫
0
1
e
-
x
2
d
x
=
1
2
∫
-
1
1
e
-
u
+
1
2
2
d
u
∫
0
1
e
-
x
2
d
x
=
1
2
[
8
9
e
-
0
+
1
2
2
+
5
9
e
-
-
3
5
+
1
2
2
+
e
-
3
5
+
1
2
2
]
∫
0
1
e
-
x
2
d
x
=
1
2
[
8
9
(
0
.
7788
)
+
5
9
0
.
9874
+
2
.
1975
]
∫
0
1
e
-
x
2
d
x
=
1
.
2308
Questions
Go to Question Paper
Q1
(a)
Q1
(b)
Q1
(c ( i ))
Q1
(c ( ii ))
Q2
(a)
Q2
(b)
Q2
(c ( i ))
Q2
(c ( ii ))
Q2
(c ( i ))
(OR)
Q2
(c ( ii ))
(OR)
Q3
(a)
Q3
(b)
Q3
(c ( i ))
Q3
(c ( ii ))
Q3
(a)
(OR)
Q3
(b)
(OR)
Q3
(c ( i ))
(OR)
Q3
(c ( ii ))
(OR)
Q4
(a)
Q4
(b)
Q4
(c ( i ))
Q4
(c ( ii ))
Q4
(a)
(OR)
Q4
(b)
(OR)
Q4
(c ( i ))
(OR)
Q4
(c ( ii ))
(OR)
Q5
(a)
Q5
(b)
Q5
(c ( i ))
Q5
(c ( ii ))
Q5
(a)
(OR)
Q5
(b)
(OR)
Q5
(c ( i ))
(OR)
Q5
(c ( ii ))
(OR)