Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Applied Mathematics for Electrical Engineering
(3130908)
AMEE-3130908
Winter-2019
Question-1b
BE | Semester-
3
Winter-2019
|
26-11-2019
Q1) (b)
4 Marks
State the formula for finding the
q
th
root and find the square root of 8 using Newton Raphson method correct to two decimal places.
Procedure to find
q
th
root by N-R Method:
Let,
x
=
N
1
q
, where
q
=
1
,
2
,
3
,
…
…
,
n
and
N
is an natural number.
⇒
x
q
-
N
=
0
⇒
f
x
=
x
q
-
N
⇒
f
'
x
=
q
x
q
-
1
By the general formula we get,
x
n
+
1
=
1
q
q
-
1
x
n
+
N
x
n
q
-
1
Where,
n
=
0
,
1
,
2
,
3
,
…
To find the square root of
8
Let,
x
=
8
⇒
x
2
-
8
=
0
⇒
f
x
=
x
2
-
8
⇒
f
'
x
=
2
x
Let,
x
0
=
3
By N-R Method:
x
n
+
1
=
1
2
x
n
+
N
x
n
,
n
=
0
,
1
,
2
,
3
,
.
.
.
x
1
=
1
2
x
0
+
8
x
0
x
1
=
1
2
3
+
8
3
x
1
=
2
.
83
n
x
n
+
1
0
2.83
1
2.83
Therefore,
x
=
2
.
83
is the square root of
8
.
Questions
Go to Question Paper
Q1
(a)
Q1
(b)
Q1
(c ( i ))
Q1
(c ( ii ))
Q2
(a)
Q2
(b)
Q2
(c ( i ))
Q2
(c ( ii ))
Q2
(c ( i ))
(OR)
Q2
(c ( ii ))
(OR)
Q3
(a)
Q3
(b)
Q3
(c ( i ))
Q3
(c ( ii ))
Q3
(a)
(OR)
Q3
(b)
(OR)
Q3
(c ( i ))
(OR)
Q3
(c ( ii ))
(OR)
Q4
(a)
Q4
(b)
Q4
(c ( i ))
Q4
(c ( ii ))
Q4
(a)
(OR)
Q4
(b)
(OR)
Q4
(c ( i ))
(OR)
Q4
(c ( ii ))
(OR)
Q5
(a)
Q5
(b)
Q5
(c ( i ))
Q5
(c ( ii ))
Q5
(a)
(OR)
Q5
(b)
(OR)
Q5
(c ( i ))
(OR)
Q5
(c ( ii ))
(OR)