Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Applied Mathematics for Electrical Engineering
(3130908)
AMEE-3130908
Winter-2019
Question-1c ( i )
BE | Semester-
3
Winter-2019
|
26-11-2019
Q1) (c ( i ))
3 Marks
Find the positive solution of
f
(
x
)
=
e
-
x
-
x
by the secant method starting from
x
0
=
0
,
x
1
=
1
.
(i) By Secant Method
Let,
f
(
x
)
=
e
-
x
-
x
f
(
x
0
)
=
f
(
0
)
=
1
>
0
f
(
x
1
)
=
f
(
1
)
=
-
0
.
6321
<
0
Therefore, root lies between
[
0
,
1
]
.
By Secant Method:
x
n
+
1
=
x
n
-
x
n
-
x
n
-
1
f
(
x
n
)
-
f
(
x
n
-
1
)
f
(
x
n
)
,
n
≥
1
.
x
2
=
x
1
-
x
1
-
x
0
f
(
x
1
)
-
f
(
x
0
)
f
(
x
1
)
x
2
=
1
-
1
-
0
-
0
.
6321
-
1
(
-
0
.
6321
)
x
2
=
0
.
6127
x
0
>
0
x
1
<
0
f
x
0
f
x
1
x
n
+
1
=
x
n
-
x
n
-
x
n
-
1
f
(
x
n
)
-
f
(
x
n
-
1
)
f
(
x
n
)
f
(
x
n
+
1
)
0
1
1
-
0
.
6321
0
.
6127
-
0
.
0708
1
0
.
6127
-
0
.
6321
-
0
.
0708
0
.
5638
0
.
0052
0
.
6172
0
.
5638
-
0
.
0708
0
.
0052
0
.
5671
0
.
0000
Therefore,
x
=
0
.
5671
is the required root.
Questions
Go to Question Paper
Q1
(a)
Q1
(b)
Q1
(c ( i ))
Q1
(c ( ii ))
Q2
(a)
Q2
(b)
Q2
(c ( i ))
Q2
(c ( ii ))
Q2
(c ( i ))
(OR)
Q2
(c ( ii ))
(OR)
Q3
(a)
Q3
(b)
Q3
(c ( i ))
Q3
(c ( ii ))
Q3
(a)
(OR)
Q3
(b)
(OR)
Q3
(c ( i ))
(OR)
Q3
(c ( ii ))
(OR)
Q4
(a)
Q4
(b)
Q4
(c ( i ))
Q4
(c ( ii ))
Q4
(a)
(OR)
Q4
(b)
(OR)
Q4
(c ( i ))
(OR)
Q4
(c ( ii ))
(OR)
Q5
(a)
Q5
(b)
Q5
(c ( i ))
Q5
(c ( ii ))
Q5
(a)
(OR)
Q5
(b)
(OR)
Q5
(c ( i ))
(OR)
Q5
(c ( ii ))
(OR)