Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Applied Mathematics for Electrical Engineering
(3130908)
AMEE-3130908
Winter-2019
Question-2c ( ii )-OR
BE | Semester-
3
Winter-2019
|
26-11-2019
Q2) (c ( ii ))
4 Marks
State Simpson’s
3
8
th
rule and hence evaluate
∫
0
3
1
1
+
x
d
x
with
n
=
6
.
Simpson’s
3
8
th
rule
∫
a
b
f
x
d
x
=
3
h
8
y
0
+
y
n
+
2
y
3
+
y
6
+
.
.
.
+
3
y
1
+
y
2
+
y
4
+
.
.
.
; Where,
h
=
b
-
a
n
Here,
f
x
=
1
1
+
x
, and
a
=
0
;
b
=
3
Where,
h
=
b
-
a
n
=
3
-
0
6
=
0
.
5
x
0
0
.
5
1
1
.
5
2
2
.
5
3
f
(
x
)
1
0
.
6667
0
.
5
0
.
4
0
.
3333
0
.
2857
0
.
25
Simpson’s
3
8
th
rule
∫
a
b
f
x
d
x
=
3
h
8
y
0
+
y
n
+
2
y
3
+
y
6
+
.
.
.
+
3
y
1
+
y
2
+
y
4
+
.
.
.
∫
a
b
f
x
d
x
=
3
0
.
5
8
1
+
0
.
25
+
2
0
.
4
+
3
0
.
6667
+
0
.
5
+
0
.
3333
+
0
.
2857
∫
a
b
f
x
d
x
=
1
.
3888
Questions
Go to Question Paper
Q1
(a)
Q1
(b)
Q1
(c ( i ))
Q1
(c ( ii ))
Q2
(a)
Q2
(b)
Q2
(c ( i ))
Q2
(c ( ii ))
Q2
(c ( i ))
(OR)
Q2
(c ( ii ))
(OR)
Q3
(a)
Q3
(b)
Q3
(c ( i ))
Q3
(c ( ii ))
Q3
(a)
(OR)
Q3
(b)
(OR)
Q3
(c ( i ))
(OR)
Q3
(c ( ii ))
(OR)
Q4
(a)
Q4
(b)
Q4
(c ( i ))
Q4
(c ( ii ))
Q4
(a)
(OR)
Q4
(b)
(OR)
Q4
(c ( i ))
(OR)
Q4
(c ( ii ))
(OR)
Q5
(a)
Q5
(b)
Q5
(c ( i ))
Q5
(c ( ii ))
Q5
(a)
(OR)
Q5
(b)
(OR)
Q5
(c ( i ))
(OR)
Q5
(c ( ii ))
(OR)