The Ricatti’s equation is, y' = x2 + y2 Therefore, fx,y= x2 + y2 Now, y(0) = 0 ⇒y0 = 0 , x0 = 0 By Taylor’s method, yxn = yn = yn-1 + h1 ! yn-1'+ h22 ! yn-1'' + ⋯ Where, xn = x0 + nh ; n = 1, 2, 3, ... Now, y1 = y0 + h1 !y0' + h22 ! y0'' + h33 ! y0''' + ⋯ y' = f(x,y) = x2 + y2 ⇒ y0' = 0 + 0 = 0 y'' = 2 x + 2 y y' ⇒ y0'' = 20 + 2 00 = 0 y''' = 2 + 2 y y'' + 2y'2 ⇒ y0''' = 2 + 2 00 + 2 02 = 2 Then by Taylor’s series, yx1 = y1 = y0 + h1 !y0' + h22 ! y0'' + h33 ! y0''' + ⋯ y(x1)= y1 = 1 + 0.21 !0 + 0.222 !0 + 0.233 !2 + ⋯ y(x1)= 0.0027