y'= x + y = f x , y Now, y( 0 ) = 1 ⇒ y0 = 1 , x0 = 0 By Euler’s method : yn+1 = yn + 1 6 [ k1 + 2k2 + 2k3 + k4 ] Where, xn = x0 + n h , n = 0, 1, 2, 3, … k1 = h f xn , yn k2 = h f xn + h2, yn + k1 2 k3 = h f xn + h2, yn + k2 2 k4 = h f xn + h, yn + k3 For, n = 0 k1 = h f x0 , y0 k1 = 0.1 f 0 , 1 k1 = ( 0.1 ) ( 0 + 1 ) k1 = 0.1 k2 = h f x0 + h2, y0 + k1 2 k2 = ( 0.1 ) f 0 + 0.1 2, 1 + 0.1 2 k1 = ( 0.1 ) ( 0.05, 1.05 ) k1 = ( 0.1 ) ( 0.05 + 1.05 ) k1 = 0.11 k3 = h f x0 + h2, y0 + k2 2 k2 = ( 0.1 ) f 0 + 0.1 2, 1 + 0.11 2 k1 = ( 0.1 ) ( 0.05, 1.055 ) k1 = ( 0.1 ) ( 0.05 + 1.055 ) k1 = 0.1105 k4 = h f x0 + h, y0 + k3 k1 = 0.1 f 0+0.1 , 1+0.1105 k1 = 0.1 f 0.1 , 1.1105 k1 = ( 0.1 ) ( 0.1 + 1.1105 ) k1 = 0.1211 Now, y1 = y0 + 1 6 [ k1 + 2k2 + 2k3 + k4 ] Now,k1 = 1 + 1 6 ( 0.1 + 2 ( 0.11 ) + 2 ( 0.1105 ) + 0.1211 ) Now,k1 = 1 + 1 6 ( 0.6631 ) Now,k1 = 1.1105 Now, x1 = x0 + h = 0 + 0.1 = 0.1 For, n = 1 k1 = h f x1 , y1 k1 = 0.1 f 0.1 , 1.1105 k1 = ( 0.1 ) ( 0.1 + 1.1105 ) k1 = 0.1211 k2 = h f x1 + h2, y1 + k1 2 k2 = ( 0.1 ) f 0.1 + 0.1 2, 1.1105 + 0.1211 2 k1 = ( 0.1 ) ( 0.15 , 1.1711 ) k1 = ( 0.1 ) ( 0.15 + 1.1711 ) k1 = 0.1321 k3 = h f x1 + h2, y1 + k2 2 k2 = ( 0.1 ) f 0.1 + 0.1 2, 1.1105 + 0.1321 2 k1 = ( 0.1 ) ( 0.15, 1.1766 ) k1 = ( 0.1 ) ( 0.15 + 1.1766 ) k1 = 0.1327 k4 = h f x1 + h, y1 + k3 k1 = 0.1 f 0.1+0.1 , 1.1105+0.1327 k1 = 0.1 f 0.2 , 1.2432 k1 = ( 0.1 ) ( 0.2 + 1.2432 ) k1 = 0.1443 Now, y2 = y1 + 1 6 [ k1 + 2k2 + 2k3 + k4 ] Now,k1 = 1.1105 + 1 6 ( 0.1211 + 2 ( 0.1321 ) + 2 ( 0.1327 ) + 0.1443 ) Now,k1 = 1.1105 + 1 6 ( 0.7950 ) Now,k1 = 1.2430 Therefore, y ( 0.2 ) = 1.2430