Applied Mathematics for Electrical Engineering (3130908)

BE | Semester-3   Winter-2019 | 26-11-2019

Q3) (b)

An urn contains 10 white and 3 black balls, while another urn contains 3 white and 5 black balls. Two balls are drawn from the first urn and put into the second urn and then a ball is drawn from the later. What is the probability that it is a white ball?

For First Urn
No. of white balls = 10
No. of black balls = 3
 
For second Urn
No. of white balls = 3
No. of black balls = 5
 
Now, probability for two balls drawn from the first urn
 
P ( E1 ) = P ( Two white balls ) =  C210 C03 C213  =  10 × 9 13 × 12  = 15 26 
 
P ( E2 ) = P ( Two black balls ) =  C010 C23 C213  =  3 × 2 13 × 12  = 1 26 
 
P ( E3 ) = P ( One white and one black ball ) =  C110 C13 C213  =  10 × 3 13 × 12  = 5 26 
 
After event E1
No. of white balls in second urn = 5
No. of black balls in second urn = 5
 
After event E2
No. of white balls in second urn = 3
No. of black balls in second urn = 7
 
After event E3
No. of white balls in second urn = 4
No. of black balls in second urn = 6
 
Let, A=Probability of a ball drawn from the second urn is white.
 
Then, by conditional probability
 
P (A E1 ) = 5 10  = 1 2 
 
P (A E2 ) = 3 10 
 
P (A E3 ) = 4 10  = 2 5 
 
Therefore, the total probability is
 
 
P ( A ) = P( E1 ) P ( A E1  ) + P ( E2 ) P ( A E2  ) + P ( E3 ) P ( A E3 )
 
P ( A ) =  15 26     1 2   +  1 26     3 10   +  5 13     2 5   
 
P ( A ) = 49 130