Applied Mathematics for Electrical Engineering (3130908)

BE | Semester-3   Winter-2019 | 26-11-2019

Q5) (c ( ii ))

State the formula for coefficient of skewness based on central moments and find it for the following frequency distribution.
Class 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75
y 8 10 15 17 8

Skewness = β1 = μ32μ23
 
Where, 
 
μ2 =   fixi -x¯2 fi and μ3 =   fixi -x¯3 fi
 
Here, We need to find x¯.
 
Class xi fi fixi
50 - 55 52.5 8 420
55 - 60 57.5 10 575
60 - 65 62.5 15 937.5
65 - 70 67.5 17 1147.5
70 - 75 72.5 8 580
 xi= 3660  xi= 3660  fi = 58  fi xi= 3660
 
x¯ =  fi xi fi  =  3660 58 = 63.1034
 
Class xi xi -x¯ xi -x¯2 xi -x¯3
50 - 55 52.5 -10.6034 112.4321 -1192.1624
55 - 60 57.5 -5.6034 31.3981 -175.9361
60 - 65 62.5 -0.6034 0.3641 -0.2197
65 - 70 67.5 5.3966 29.1233 157.1668
70 - 75 72.5 9.3966 88.2961 829.6831
 xi= 3660  xi= 3660  xi -x¯3= - 381.4683  xi -x¯2= 261.6137  xi -x¯3= - 381.4683
 
Then
 
μ2 =   fixi -x¯2 fi =  261.6137 58 = 4.5106 
 
μ3 =   fixi -x¯3 fi = -  381.4683 58 = 6.5770
 
Skewness = β1 = μ32μ23 =   4.5106 2   6.5770 3  = 0.0715