Let, z = -1 ⇒x = -1 & y = 0 ⇒r = 1 & θ = π + 2kπ The polar form of complex number, -1 = r cosθ + i sinθ ⇒-1 = 1cosπ + 2kπ + i sinπ + 2kπ ⇒-114 = cosπ + 2kπ + i sinπ + 2kπ14 ⇒-114 = cosπ + 2kπ4 + i sinπ + 2kπ4 ( De Movire's Theorem) ; k = 0, 1, 2, 3. If k= 0, then z1 = cos π4 + i sin π4. If k= 1, then z2 = cos 3π4 + i sin 3π4. If k= 2, then z3 = cos 5π4 + i sin 5π4. If k= 3, then z4 = cos 7π4 + i sin 7π4.