→ We know that the solution of wave equation ∂2u∂t2 = c2∂2u∂x2 is given by ux, t = ∑n=1∞ An sin nπx L cos nπct L -----1 → Using , ux, 0 = ksin x - sin 2x, we get ux, 0 = ∑n=1∞ An sin nx ⇒ksin x - sin 2x = A1 sin x + A2 sin 2x + A3 sin 3x +... ⇒A1 = k, A2 = - k, A3 = 0 So, the solution is, ux, t = A1 sin x cos ct + A2 sin 2x cos 2ct ∵ 1 ux, t = k sin x cos t - k sin 2x cos 2t ∵ c = 1