yzp2 - q = 0 -----1 ⇒f = yzp2 - q Auxiliary equation: dp fx + pfz = dq fy + qfz = dz -pfp - qfq = dx -fp = dy -fq ⇒dp yp3 = dq zp2 + yp2q = dz -2yzp2 + q = dx -2yzp = dy 1 ⇒dp yp3 = dy 1 ⇒∫1 p3 dp =∫ y dy ⇒ p-2 -2 = y2 2 - a 2 ⇒ 1 p2 = a - y2 ⇒ p2 = 1 a - y2 ⇒ p = 1 a - y2 -----2 → By 1 and 2, We have yzp2 - q = 0 ⇒ q = yzp2 ⇒ q = yz a - y2 Solution: dz = 1 a - y2 dx + yz a - y2 dy ⇒dz - yz a - y2 dy = 1 a - y2 dx ⇒ a - y2 dz - yz a - y2 dy = dx ⇒dz a - y2 = dx ⇒∫ dz a - y2 = ∫ dx ⇒ z a - y2 = x + b