Let, ux, t = Xx · Tt = X · T ∂u∂x = X' · T & ∂u∂t = X · T' Now, 2∂u∂x = ∂u∂t + u ⇒2 X' · T = X · T' + X · T Dividing by X∙Y both the sides, ⇒2X' · T X · T = X · T' X · T + X · T X · T ⇒2X' X = T' T + 1 ⇒2X' X = T' T + 1 = k ∎2X' X = k ⇒ 1 X dX = k 2dx ⇒ log X = kx 2 + c ⇒ X = c1e kx 2 ∎T' T + 1 = k ⇒ 1 T dT = k - 1dt ⇒ log T = k - 1t + c ⇒ T = c2ek - 1t Solution: ux, t = X · T = c1e kx 2c2ek - 1t -----1 Now, ux, 0 = 4e-3x By 1, We have ux, 0 = c1e kx 2c2ek - 10 ⇒4e-3x = c1 c2 e kx 2 ⇒c1 c2 = 4 & k 2=-3 ⇒c1 c2 = 4 & k=-6 Solution: ux, t = 4 e-3x e-7t = 4 e-3x-7t