Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Summer-2020 | 27-10-2020

Q4) (a)

Find the solution of x2p + y2q = z2.

Auxiliary equation:
 
dxP = dyQ = dzR  dxx2 = dyy2 = dzz2
 
Group-I dxx2 = dyy2
 
dxx2 =  dyy2 -1x = -1y + c1 1y - 1x = c1
 
Group-II dyy2 = dzz2
 
dyy2 =  dzz2 -1y = -1z + c2 1z - 1y = c2
 
Solution: f 1y - 1x , 1z - 1y = 0