Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Summer-2020 | 27-10-2020

Q3) (b)

Evaluate using Cauchy’s residue theorem C e2zz + 13  dz, Where, C : 4x2 + 9y2 = 16.

Here, fz = e2zz + 13  &  C : 4x2 + 9y2 = 16.
 
Resfz,z0 = 1 n-1 !  limzz0 dn-1dzn-1z-z0n fz
 
Resfz,-1 = 1 2 !  limz-1 d2dz2z + 13 e2zz + 13
 
Resfz,-1 = 1 2  limz-1  4e2z 
 
Resfz,-1 = 2e-2
 
→ Then by Cauchy's residue theorem,
 
C e2zz + 13  dz = 2πi Sum of residue = 2πi2e-2
 
C e2zz + 13  dz = 4πie-2