Here, fz = e2zz + 13 & C : 4x2 + 9y2 = 16. Resfz,z0 = 1 n-1 ! limz→z0 dn-1dzn-1z-z0n fz ⇒Resfz,-1 = 1 2 ! limz→-1 d2dz2z + 13 e2zz + 13 ⇒Resfz,-1 = 1 2 limz→-1 4e2z ⇒Resfz,-1 = 2e-2 → Then by Cauchy's residue theorem, ∫C e2zz + 13 dz = 2πi Sum of residue = 2πi2e-2 ⇒∫C e2zz + 13 dz = 4πie-2