Here, A = 123253108 . Now, A = 123253108 Now, A = 1(40-0)-2(16-3)+3(0-5) Now, A = 40-26-15 Now, A = -1≠0 So, A-1 exist. By Gauss - Jordan Method, A I =123253108 100010001 Apply,R12 (-2) , R13 (-1) A I ~ 1232-2(1)5-2(2)3-2(3)1-1(1)0-1(2)8-1(3) 1000-2(1)1-2(0)0-2(0)0-1(1)0-1(0)1-1(0) A I ~ 1 2 30 1-30-2 5 100-21 0 -101 Apply,R23 (2) , R21 (-2) A I ~ 1-2(0) 2-2(1) 3-2(-3)0 1-30+2(0)-2+2(1) 5+2(-3) 1-2(-2)0-2(1) 0-2(0)-21 0 -1+2(-2)0+2(1) 1+2(0) A I ~ 10 901-3 00-1 5-20-2 1 0-5 21 Apply, R3(-1) A I ~ 10 901-3 00 1 5-2 0-2 1 0 5-2-1 Apply,R32 (3) , R31 (-9) A I ~ 1-9(0)0-9(0) 9-9(1)0+3(0)1+3(0)-3+3(1)001 5-9(5)-2-9(-2)0-9(-1)-2+3(5)1+3(-2) 0+3(-1)5-2 -1 A I ~ 100010001 -40 16 9 13 -5 -3 5 -2-1 I A-1 =I A-1 So, A-1=-40 16 9 13-5-3 5-2-1