Mathematics-I (3110014)

BE | Semester-1   Winter-2019 | 17-01-2020

Q5) (c)

If u=fx-y, y-z, z-x then show that ux+uy+uz=0.

Let,x-y=l

lx=1

ly=-1

Let,y-z=m

my=1

mz=-1

Let,z-x=n

nx=-1

nz=1

We have, u=f(x-y,y-z,z-x)=f(l,m,n)

ux=ul lx+un nx

ux=ul 1+un -1

ux=ul-un

uy=ul ly+um my

uz=ul (-1)+um (1)

uz=-ul+um

uz=um mz+un nz

uz=um (-1)+un (1)

uz=-um+un

Now,ux+uy+uz

No=ul-un-ul+um-um+un

No=0

Hence, proved.