Let, x=r sinθ cosϕ ; y=r sinθ sinϕ ; z=r cosθ . Jacobian, J=∂x∂r∂x∂θ∂x∂ϕ∂y∂r∂y∂θ∂y∂ϕ∂z∂r∂z∂θ∂z∂ϕ Jacobian, J=sinθ cosϕr cosθ cosϕ-r sinθ sinϕsinθ sinϕr cosθ sinϕ r sinθ cosϕcosθ-r sinθ0 Jacobian, J=sinθ cosϕ 0+r2 sin2θ cosϕ - r cosθ cosϕ (0-r sinθ cosθ cosϕ)- r sinθ sinϕ (-r sin2θ sinϕ - r cos2θ sinϕ) Jacobian, J=r2 sin3θ cos2ϕ+r2 sinθ cos2θ cos2ϕ+r2 sin3θ sin2ϕ+r2 sinθ cos2θ sin2ϕ Jacobian, J=r2 sin3θ cos2ϕ+r2 sin3θ sin2ϕ+r2 sinθ cos2θ cos2ϕ+r2 sinθ cos2θ sin2ϕ Jacobian, J=r2 sin3θ cos2ϕ+sin2ϕ +r2 sinθ cos2θ cos2ϕ+ sin2ϕ Jacobian, J=r2 sin3θ+r2 sinθ cos2θ Jacobian, J=r2 sinθ sin2θ + cos2θ Jacobian, J=r2 sinθ Now,∭xyz dx dy dz N,=∫0π2∫0π2∫02 r sinθ cosϕ r sinθ sinϕ r cosθ r2 sinθ dr dθ dϕ N,=∫0π2∫0π2∫02 r5sin3θ cosθ cosϕ sinϕ dr dθ dϕ N,=∫0π2cosϕ sinϕ dϕ∫0π2sin3θ cosθ dθ∫02 r5 dr N,=∫0π2sin2ϕ2 dϕ∫0π2sin3θ cosθ dθ∫02 r5 dr N,=-cos2ϕ20π2 sin4θ40π2 r6602 N,=-cos2π2-cos02 sin4π2-sin404 26-066 N,=--1-14 1-04 64-06 N,=24· 14·646 N,=43 Hence, ∭xyz dx dy dz=43