Mathematics-I (3110014)

BE | Semester-1   Winter-2019 | 17-01-2020

Q5) (c)

Evaluate xyz dx dy dz over the positive octant of the sphere x2+y2+z2=4.

Let, x=r sinθ cosϕ  ;  y=r sinθ sinϕ  ;  z=r cosθ .

Jacobian, J=xrxθxϕyryθyϕzrzθzϕ

Jacobian, J=sinθ  cosϕr cosθ  cosϕ-r  sinθ sinϕsinθ  sinϕr cosθ  sinϕ  r sinθ  cosϕcosθ-r  sinθ0

Jacobian, J=sinθ  cosϕ 0+r2 sin2θ cosϕ - r cosθ cosϕ (0-r sinθ cosθ cosϕ)- r sinθ sinϕ (-r sin2θ sinϕ - r cos2θ sinϕ)

Jacobian, J=r2 sin3θ cos2ϕ+r2 sinθ cos2θ cos2ϕ+r2 sin3θ sin2ϕ+r2 sinθ cos2θ sin2ϕ

Jacobian, J=r2 sin3θ cos2ϕ+r2 sin3θ sin2ϕ+r2 sinθ cos2θ cos2ϕ+r2 sinθ cos2θ sin2ϕ

Jacobian, J=r2 sin3θ cos2ϕ+sin2ϕ +r2 sinθ cos2θ cos2ϕ+ sin2ϕ

Jacobian, J=r2 sin3θ+r2 sinθ cos2θ 

Jacobian, J=r2 sinθ sin2θ + cos2θ 

Jacobian, J=r2 sinθ 

Now,xyz dx dy dz

N,=0π20π202 r sinθ cosϕ r sinθ sinϕ r cosθ r2 sinθ dr dθ 

N,=0π20π202 r5sin3θ cosθ cosϕ sinϕ dr dθ 

N,=0π2cosϕ sinϕ 0π2sin3θ cosθ dθ02 r5  dr

N,=0π2sin2ϕ2 0π2sin3θ cosθ dθ02 r5  dr

N,=-cos2ϕ20π2  sin4θ40π2  r6602

N,=-cos2π2-cos02  sin4π2-sin404  26-066

N,=--1-14  1-04  64-06

N,=24· 14·646

N,=43

Hence, xyz dx dy dz=43