Here, un=x1·2+x23·4+x35·6+x47·8+... ⇒ un=xn2n2n-1 ⇒ un+1=xn+12n+12n+1-1=xn+12n+22n+2-1=xn+12n+22n+1 Now, L=limn→∞unun+1 Now, L=limn→∞xn2n2n-12n+22n+1xn+1 Now, L=limn→∞12n22-1nn22+2n2+1nx Now, L=limn→∞122-02+02+0x Now, L=limn→∞144x No⇒ L=1x By D’ Alembert’s ratio test, the series is, 1. Convergent,if 1/x>1. i.e. x<1. 2. Divergent,if 1/x<1. i.e. x>1. 3. Test fails,if 1/x=1. i.e. x=1. Let us check for, x=1. Putting x=1 in un=xn2n(2n-1) . ⇒un=12n(2n-1)=1n22-1n . Let, vn=1n2 Now, limn→∞unvn=limn→∞12n22-1nn21 Now, limn→∞unvn=122-1∞ Now, limn→∞unvn=122-0 Now, limn→∞unvn=1 4 ; finite & non-zero. By p–test, vn=1n2 ; p=2>1 So,∑vn is convergent. By limit comparison test,∑un is convergent. Hence given series is convergent for x≤1 and divergent for x>1.