Here,f(x,y)=3x2-y2+x3. Now, ∂f∂x=∂∂x3x2-y2+x3 ∂f∂x=∂∂x3x2-∂∂xy2+∂∂xx3 ∂f∂x=6x-0+3x2 ∂f∂x=6x+3x2 ∂f∂y=∂∂y3x2-y2+x3 ∂f∂y=∂∂y3x2-∂∂yy2+∂∂yx3 ∂f∂y=0-2y+0 ∂f∂y=-2y For, Stationary point, ∂f∂x=0 ⟹6x+3x2=0 ⟹3x(2+x)=0 ⟹3x=0 OR 2+x=0 ⟹x=0 OR x=-2 ∂f∂y=0 ⟹-2y=0 ⟹y=0 Hence, Stationary points are (0,0) & (-2,0). Now, r=∂2f∂x2 r=∂∂x∂f∂x r=∂∂x6x+3x2 r=∂∂x6x+∂∂x3x2 r=6+6x s=∂2f∂x∂y s=∂∂x∂f∂y s=∂∂x-2y s=0 t=∂2f∂y2 t=∂∂y∂f∂y s=∂∂y-2y s=-2 Point r=6+6x s=0 r=-2 rt-s2 Conclusion 0,0 6+6(0)=6>0 0 -2 6(-2)-(0)2=-12<0 Saddle Point -2,0 6+6(-2)=-6<0 0 -2 -6(-2)-(0)2=12>0 Local Maximum Point