Mathematics-I (3110014)

BE | Semester-1   Winter-2019 | 17-01-2020

Q2) (b)

Discuss the Maxima and Minima of the function 3x2-y2+x3.

Here,f(x,y)=3x2-y2+x3.

Now,

fx=x3x2-y2+x3

fx=x3x2-xy2+xx3

fx=6x-0+3x2

fx=6x+3x2

fy=y3x2-y2+x3

fy=y3x2-yy2+yx3

fy=0-2y+0

fy=-2y

For, Stationary point,

fx=0

6x+3x2=0

3x(2+x)=0

3x=0    OR    2+x=0

x=0      OR    x=-2

fy=0

-2y=0

y=0

Hence, Stationary points are (0,0)  & (-2,0).

Now,

r=2fx2

r=xfx

r=x6x+3x2

r=x6x+x3x2

r=6+6x

s=2fxy

s=xfy

s=x-2y

s=0

t=2fy2

t=yfy

s=y-2y

s=-2

Point r=6+6x s=0 r=-2 rt-s2 Conclusion
0,0 6+6(0)=6>0 0 -2 6(-2)-(0)2=-12<0 Saddle Point
-2,0 6+6(-2)=-6<0 0 -2 -6(-2)-(0)2=12>0 Local Maximum Point