Here, A=0 1 10 0 11-3 3 A-λ I=0 1 10 0 11-3 3-λ 100010101 A-λ I=0 1 10 0 11-3 3-λ000λ010λ A-λ I=-λ 1 1 0 -λ 1 1 -3 3-λ ………… 1 Now,Characteristic equation is, |A-λI|=0 ⇒-λ 1 1 0 -λ 1 1 -3 3-λ=0 ⟹(-λ)[(-λ)(3-λ)-(-3)(1)]-(1)[(0)(3-λ)-(1)(1)]+0=0 ⟹(-λ)(-3λ+λ2+3)-(-1)=0 ⟹3λ2-λ3-3λ+1=0 ⟹λ3-3λ2+3λ-1=0 [ Multiplied by"minus"] ⟹(λ-1)3=0 ⟹λ=1,1,1 are eigen values. Now, (A-λI)X=0 ⇒-1 10 0 -1 1 1-32xyz=000 Considering the Augmented matrix, ~-1 10 0 -1 1 1-32 0 0 0 Apply, R13 (1) ~-1 10 0 -1 1 1-1-3+12+0 0 0 0+0 ~-1 10 0 -1 1 0-22 0 0 0 Apply, R23 (-2) ~-1 10 0 -1 1 0-2(0)-2-2(-1)2-2(1) 0 0 0-2(0) ~-1 10 0 -1 1 0 00 0 0 0 By back substitution, Let, z=t ; t∈ℝ -y+z=0 ⟹y=z ⟹y=t -x+y=0 ⟹x=y ⟹x=t So, (x,y,z)=(t,t,t)=t(1,1,1) Hence, Eigen vector corresponding to λ=1 is (1,1,1)T.