Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Mathematics-I
(3110014)
Maths-I-3110014
Winter-2019
BE | Semester
1
Winter - 2019
|
17-01-2020
Total Marks
70
Q1
(a)
Find the equations of the tenagent plane and normal line to the surface
x
2
+
y
2
+
z
2
=
3
at the point
(
1
,
1
,
1
)
.
3 Marks
Unit : Functions of several variables
|
Topic : tangent plane and normal line
 
(b)
Evaluate
lim
x
→
0
xe
x
-
log
1
+
x
x
2
4 Marks
Unit : Indeterminate Forms and L'Haspital's Rule, Improper Integrals, Applications of definite integral
 
(c)
Using Gauss Elimination method solve the following system
-
x
+
3
y
+
4
z
=
30
3
x
+
2
y
-
z
=
9
2
x
-
y
+
2
z
=
10
7 Marks
Unit : Elementary row operations in Matrix
Q2
(a)
Test the convergence of the series
1
3
+
2
5
2
+
3
7
3
+
.
.
.
+
n
2
n
+
1
n
+
.
.
.
3 Marks
Unit : Convergence and divergence of sequences
Q2
(b)
Discuss the Maxima and Minima of the function
3
x
2
-
y
2
+
x
3
.
4 Marks
Unit : Functions of several variables
Q2
(c)
Find the fourier series of
f
x
=
π
-
x
2
.
7 Marks
Unit : Fourier Series
OR
Q2
(c)
Change the order of integration and evaluate
∫
0
1
∫
x
1
sin
y
2
dy
dx
.
7 Marks
Unit : Integral
Q3
(a)
Find the value of
β
7
2
,
5
2
.
3 Marks
Unit : Indeterminate Forms and L'Haspital's Rule, Improper Integrals, Applications of definite integral
Q3
(b)
Obtain the fourier cosine series of the function
f
x
=
e
x
.
4 Marks
Unit : Fourier Series
Q3
(c)
Find the maximum and minimum distance from the point
1
,
2
,
2
to the sphere
x
2
+
y
2
+
z
2
=
36
.
7 Marks
Unit : Functions of several variables
OR
Q3
(a)
Test the convergence of the series
1
1
2
-
1
2
2
+
1
3
2
-
1
4
2
+
.
.
.
.
3 Marks
Unit : Convergence and divergence of sequences
Q3
(b)
Evaluate
∬
x
2
-
y
2
dx
dy
over the triangle with the vertices
0
,
1
,
1
,
1
,
1
,
2
.
4 Marks
Unit : Integral
Q3
(c)
Find the volume of the solid generated by rotating the plane region bounded by
y
=
1
x
,
x
=
1
,
x
=
3
about the X axis.
7 Marks
Unit : Indeterminate Forms and L'Haspital's Rule, Improper Integrals, Applications of definite integral
Q4
(a)
Evaluate
∫
0
π
∫
0
sin
θ
r
d
r
d
θ
.
3 Marks
Unit : Integral
Q4
(b)
Express
f
x
=
2
x
3
+
3
x
2
-
8
x
+
7
in terms of
x
-
2
.
4 Marks
Unit : Convergence and divergence of sequences
Q4
(c)
Using Gauss-Jordan method find
1
2
3
2
5
3
1
0
8
.
7 Marks
Unit : Elementary row operations in Matrix
OR
Q4
(a)
Using Cayley-Hamilton Theorem find
A
-
1
for
1
-
1
2
3
.
3 Marks
Unit : Elementary row operations in Matrix
|
Topic : Cayley-Hamilton theorem
Q4
(b)
Evaluate
∫
0
∞
dx
1
+
x
2
.
4 Marks
Unit : Indeterminate Forms and L'Haspital's Rule, Improper Integrals, Applications of definite integral
|
Topic : Improper Integrals
Q4
(c)
Test the convergence of the series
x
1
·
2
+
x
2
3
·
4
+
x
3
5
·
6
+
x
4
7
·
8
+
.
.
.
.
7 Marks
Unit : Convergence and divergence of sequences
|
Topic : Ratio test
Q5
(a)
Evaluate
∫
0
1
∫
1
2
xy
d
y
d
x
.
3 Marks
Unit : Integral
|
Topic : Multiple integral
Q5
(b)
Find the eigen values and eigenvectors of the matrix
0
1
1
0
0
1
1
-
3
3
.
4 Marks
Unit : Elementary row operations in Matrix
|
Topic : Eigen values and eigen vectors
Q5
(c)
If
u
=
f
x
-
y
,
y
-
z
,
z
-
x
then show that
∂
u
∂
x
+
∂
u
∂
y
+
∂
u
∂
z
=
0
.
7 Marks
Unit : Functions of several variables
|
Topic : Chain rule
OR
Q5
(a)
Find the directional derivatives of
f
=
xy
2
+
yz
2
at the point
2
,
-
1
,
1
, in the direction of
i
+
2
j
+
2
k
.
3 Marks
Unit : Functions of several variables
|
Topic : Gradient, Directional derivative
Q5
(b)
Test the convergence of the series
∑
n
=
1
∞
n
n
2
+
1
.
4 Marks
Unit : Convergence and divergence of sequences
|
Topic : The Comparison test
Q5
(c)
Evaluate
∫
∫
∫
xyz
dx
dy
dz
over the positive octant of the sphere
x
2
+
y
2
+
z
2
=
4
.
7 Marks
Unit : Integral
|
Topic : multiple integral by substitution