Here,fx,y,z=x2+y2+z2-3 and p=(x1,y1,z1)=(1, 1, 1). Now, ∂f∂x=∂∂x(x2+y2+z2-3)=2x ⟹∂f∂x=(2x)(1,1,1) [Replace,p=(1,1,1)] ⟹∂f∂xp=2(1)=2 ∂f∂y=∂∂y[x2+y2+z2-3]=2y ⟹∂f∂y=(2y)(1,1,1) [Replace,p=(1,1,1)] ⟹∂f∂yp=2(1)=2 ∂f∂z=∂∂z[x2+y2+z2-3]=2z ⟹∂f∂z=(2z)(1,1,1) [Replace,p=(1,1,1)] ⟹∂f∂zp=2(1)=2 Equation of TANGENT PLANE is, (x-x1) ∂f∂xp +(y-y1) ∂f∂xp +(z-z1) ∂f∂xp=0 ⟹(x-1) 2+(y-1) 2+(z-1) 2=0 ⟹2x-2+2y-2+2z-2=0 ⟹2x+2y+2z-6=0 ⟹2x+2y+2z=6 ⟹x+y+z=3 [Cancelling by "2" from eqch term] Equation of NORMAL LINE is, x-x1∂f∂xp = y-y1∂f∂yp = z-z1∂f∂zp ⟹x-12 = y-12 = z-12 Cancelling "2" from denomenator ⟹x-1=y-1=z-1 Adding "1" in all terms ⟹x=y=z