Mathematics-I (3110014)

BE | Semester-1   Winter-2019 | 17-01-2020

Q1) (a)

Find the equations of the tenagent plane and normal line to the surface x2+y2+z2=3 at the point (1,1,1).

Here,fx,y,z=x2+y2+z2-3 and p=(x1,y1,z1)=(1, 1, 1).

Now,

  • fx=x(x2+y2+z2-3)=2x

    fx=(2x)(1,1,1)                 [Replace,p=(1,1,1)]

    fxp=2(1)=2

  • fy=y[x2+y2+z2-3]=2y

    fy=(2y)(1,1,1)                 [Replace,p=(1,1,1)]

    fyp=2(1)=2

  • fz=z[x2+y2+z2-3]=2z

    fz=(2z)(1,1,1)                 [Replace,p=(1,1,1)]

    fzp=2(1)=2

Equation of  TANGENT PLANE is,

    (x-x1) fxp +(y-y1) fxp +(z-z1) fxp=0

    (x-1) 2+(y-1) 2+(z-1) 2=0

    2x-2+2y-2+2z-2=0

    2x+2y+2z-6=0

    2x+2y+2z=6

    x+y+z=3                 [Cancelling by "2" from eqch term]

Equation of  NORMAL LINE is,

    x-x1fxp = y-y1fyp = z-z1fzp

    x-12 = y-12 = z-12                 Cancelling "2" from denomenator

    x-1=y-1=z-1               Adding "1" in all terms

    x=y=z