Let (x,y,z) be any point on the sphere. Its distance D from the point (1,2,2) is, D=x-12+y-22+z-22 D2=fx,y,z=x-12+y-22+z-22 .........[1] Let, φx,y,z=x2+y2+z2-36 .........[2] Now, Auxiliary equation is, fx,y,z+λ·φx,y,z=0 x-12+y-22+z-22 +λ·x2+y2+z2-36=0 .........[3] Taking partial differentiation of Eq. 3 with respect to x, ⟹2(x-1)+λ⋅(2x)=0 ⟹λ⋅(2x)=-2(x-1) ⟹λ=1-xx=1x-1 Taking partial differentiation of Eq. 3 with respect to y, ⟹2(y-2)+λ⋅(2y)=0 ⟹λ⋅(2y)=-2(y-2) ⟹λ=2-yy=2y-1 Taking partial differentiation of Eq. 3 with respect to z, ⟹2(z-2)+λ⋅(2z)=0 ⟹λ⋅(2z)=-2(z-2) ⟹λ=2-zz=2z-1 Comparing values of λ, 1x-1=2y-1 ⟹1x=2y ⟹y=2x 1x-1=2z-1 ⟹1x=2z ⟹z=2x Substituting the values of y and z in given eq. of sphere, x2+y2+z2=36 ⇒x2+4x2+4x2=36 ⇒9x2=36 ⇒x2=4 ⇒x=±2 Now, y=2x=2(±2)=±4 z=2x=2(±2)=±4 So, Stationary Point are (2,4,4) & (-2,-4,-4). Putting Values for x,y & z to find distance, D=x-12+y-22+z-22=2-12+4-22+4-22=3 D=x-12+y-22+z-22=-2-12+-4-22+-4-22=9 So, Minimum distance is 3 and maximum distance is 9.