We have, f=xy2+yz2 and u¯=i+2j+2k=(1,2,2). ∂f∂x=y2 ⟹∂f∂x(2,-1,1)=(-1)2=1 ∂f∂y=2xy+z2 ⟹∂f∂y(2,-1,1)=2(2)(-1)+(1)2=-4+1=-3 ∂f∂x=2yz ⟹∂f∂x(2,-1,1)=2(-1)(1)=-2 Now, ∇f=∂f∂x i^+∂f∂y j^+∂f∂z k^ ⟹(∇f)(2,-1,1)=∂f∂x(2,-1,1)i^+∂f∂y(2,-1,1)j+∂f∂z(2,-1,1)k^ ⟹(∇f)(2,-1,1)=1 i^+-3 j+-2 k^ ⟹(∇f)(2,-1,1)=1, -3, -2 Now, u^=uu Now, u^=(1,2,2)12+22+22 Now, u^=(1,2,2)9 Now, u^=(1,2,2)3 For Directional Derivative, (∇f)(2,-1,1) ⋅ u^=(1,-3,-2) ⋅ (1,2,2)3 (∇f)(2,-1,1) ⋅ u^=(1)⋅(1)+(-3)⋅(2)+(-2)⋅(2)3 (∇f)(2,-1,1) ⋅ u^=1-6-43 (∇f)(2,-1,1) ⋅ u^=-93 (∇f)(2,-1,1) ⋅ u^=-3 So, Directional Derivative is −3.