De-Movire’s formula: cosθ +i sinθn = cos nθ +i sin nθ ; n∈ℚ -----[1] 1+i 3 100 Let, z = 1+i 3 ⇒x=1 & y= 3 r = x2 + y2= 12 + 32= 1 + 3= 4 = 2 θ = tan-1yx = tan-131 = tan-13=π 3 The polar form of complex number, 1+i3 = rcosθ + i sinθ = 2cosπ 3 + i sinπ 3 1+i3100= 2100 cosπ 3 + i sinπ 3 100 1+i3100= 2100 cos100π 3 + i sin100π 3 ∵ 1 1+i3100= 2100 -0.5 + i sin100π 3 1-i 3 100 Let, z = 1-i 3 ⇒x=1 & y=-3 r = x2 + y2= 12 + -32= 1 + 3= 4 = 2 θ = tan-1yx = tan-1-31 =- tan-13=-π 3 The polar form of complex number, 1-i3 = rcosθ + i sinθ = 2cosπ 3 - i sinπ 3 1-i3100= 2100 cosπ 3 - i sinπ 3 100 1+i3100= 2100 cos100π 3 - i sin100π 3 ∵ 1 1+i3100= 2100 -0.5 - i sin100π 3 1+i3100 + 1-i3100 = 2100 -0.5 + i sin100π 3 + 2100 -0.5 - i sin100π 3 = 2100 -0.5 + i sin100π 3 -0.5 - i sin100π 3 = 2100 -0.5 - 0.5 = -2100