Let, z = r eiθ ( Exponential Form ) ⇒log z = log r + log eiθ ⇒log z = log r + i θ log e ⇒log z = log r + i θ -----1 ⇒log z = log r ; r = x2 + y2 & θ = argument of z Let, z = ii ⇒log z = log ii ⇒log z = i × log i ⇒log z = i × i π2 + 2kπ log i = i π2 + 2kπ as z=i & 1 ⇒log z = i2 π2 + 2kπ ⇒log z =- π2 + 2kπ ⇒z =e- π2 + 2kπ