Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Winter-2019 | 26-11-2019

Q5) (b)

Find the temperature in the thin metal rod of length L with both the ends insulated and initial temperature is sin  πx L.

→we know that the solution of heat equation ut = k 2ux2  is given by 
 
ux,t = n=1 Bn sinnπxL e- n2π2ktL2
 
Using ux,0 = sin L, we get
 
ux,0 = n=1 Bn sinnπxL
 
sin L = B1 sin   L + B2 sin  2 L + B3 sin  3 L +...
 
B1 = 1, B2 = 0, B3 = 0,...
 
So, the solution is
 
ux,t = sin πxL e-  π2kt L2