Subjects
Applied Mathematics for Electrical Engineering - 3130908
Complex Variables and Partial Differential Equations - 3130005
Engineering Graphics and Design - 3110013
Basic Electronics - 3110016
Mathematics-II - 3110015
Basic Civil Engineering - 3110004
Physics Group - II - 3110018
Basic Electrical Engineering - 3110005
Basic Mechanical Engineering - 3110006
Programming for Problem Solving - 3110003
Physics Group - I - 3110011
Mathematics-I - 3110014
English - 3110002
Environmental Science - 3110007
Software Engineering - 2160701
Data Structure - 2130702
Database Management Systems - 2130703
Operating System - 2140702
Advanced Java - 2160707
Compiler Design - 2170701
Data Mining And Business Intelligence - 2170715
Information And Network Security - 2170709
Mobile Computing And Wireless Communication - 2170710
Theory Of Computation - 2160704
Semester
Semester - 1
Semester - 2
Semester - 3
Semester - 4
Semester - 5
Semester - 6
Semester - 7
Semester - 8
Complex Variables and Partial Differential Equations
(3130005)
CVPDE-3130005
Winter-2019
Question-5b-OR
BE | Semester-
3
Winter-2019
|
26-11-2019
Q5) (b)
4 Marks
Find the temperature in the thin metal rod of length
L
with both the ends insulated and initial temperature is
π
sin
πx
L
.
→we know that the solution of heat equation
∂
u
∂
t
=
k
∂
2
u
∂
x
2
is given by
π
π
u
x
,
t
=
∑
n
=
1
∞
B
n
sin
nπx
L
e
-
n
2
π
2
kt
L
2
Using
π
u
x
,
0
=
sin
nπ
L
,
we get
π
u
x
,
0
=
∑
n
=
1
∞
B
n
sin
nπx
L
π
π
π
π
⇒
sin
nπ
L
=
B
1
sin
nπ
L
+
B
2
sin
2
nπ
L
+
B
3
sin
3
nπ
L
+
.
.
.
⇒
B
1
=
1
,
B
2
=
0
,
B
3
=
0
,
.
.
.
So, the solution is
π
π
u
x
,
t
=
sin
πx
L
e
-
π
2
kt
L
2
Questions
Go to Question Paper
Q1
(a)
Q1
(b)
Q1
(c)
Q2
(a)
Q2
(b)
Q2
(c)
Q2
(c)
(OR)
Q3
(a)
Q3
(b)
Q3
(c)
Q3
(a)
(OR)
Q3
(b)
(OR)
Q3
(c ( i ))
(OR)
Q3
(c ( ii ))
(OR)
Q4
(a)
Q4
(b)
Q4
(c)
Q4
(a)
(OR)
Q4
(b)
(OR)
Q4
(c)
(OR)
Q5
(a)
Q5
(b)
Q5
(c)
Q5
(a)
(OR)
Q5
(b)
(OR)
Q5
(c)
(OR)