Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Winter-2019 | 26-11-2019

Q3) (b)

If fz = u + iv , is an analytic function,prove that 2x2 + 2y2 Re fz2 = 2 f'z2 .

Let, fz = u + iv , is an analytic function.
 
Refz = u  Refz2 = u2
 
  x Refz2 =  x u2 = 2 u ux
 
 2 x2 Refz2 = 2 x2 u2 = 2 u uxx + ux ux = 2 uuxx + ux2  -----1
 
  y Refz2 =  y u2 = 2 u uy
 
 2 y2 Refz2 = 2 y2 u2 = 2 u uyy + uy uy = 2 uuyy + uy2  -----2
 
Taking 1 + 2, We have
 
 2 x2  + 2 y2 Refz2 = 2 uuxx + ux2  +  2 uuyy + uy2 
 
 2 x2  + 2 y2 Refz2 = 2u uxx +  uyy + 2  ux2   + uy2 
 
 2 x2  + 2 y2 Refz2 = 2f'z2
 
Because
 
1  fz = u + iv is an analytic function, then u is a harmonic function. So, uxx +  uyy = 0.
 
2  fz = u + iv f'z = ux + ivx  = ux - iuy by CR - equations.
 
2  fz = u + iv f'z = ux2   + uy2   
 
2  fz = u + iv f'z2 = ux2   + uy2