Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Winter-2019 | 26-11-2019

Q3) (a)

Expand Laurent series of fz =  1 - ez z at z= 0 and identify the singularity.

fz =  1 - ez z =  1 z 1 - ez
 
fz =  1 z 1 - 1 + z + z22 ! + z33 ! + ...
 
fz =  1 z - z - z22 ! - z33 ! - ...
 
fz = - 1 -  z 2 -  z2 6 - ...
 
⇒ There is no principal part.
 
 fz has removable singularity at z= 0.