Definition: A function ux,y is called harmonic if it is twice continuously differentiable and satisfies ∂2u∂x2 + ∂2u∂y2 = 0. Verification: ux,y = sinh x sin y ⇒∂u∂x= sin y cosh x -----1 ⇒∂2u∂x2= sin y sinh x & ∂u∂y= sinh x cos y -----2 ⇒∂2u∂y2= - sinh x sin y So, ∂2u∂x2 + ∂2u∂y2 = sinh x sin y - sinh x sin y = 0 ∴ ux,y is a harmonic function. Harmonic conjugate: Let, fz = u + i v ⇒f'z = ∂u∂x + i ∂v∂x ⇒f'z = ∂u∂x - i ∂v∂y ∵ CR Equation ⇒f'z = sin y cosh x - i sinh x cos y ∵ 1 & 2 ⇒f'z = sin 0 cosh z - i sinh z cos 0 ∵ x=z & y=0 ⇒f'z = - i sinh z ∵ sin 0 = 0 & cos 0 = 1 ⇒fz = - i ∫sinh z dz ∵ Taking Integration ⇒fz = - i cosh z + c ⇒fz = - i cosh x + i y + c ⇒fz = - i cosh x cosh iy + sinh x sinh iy + c ⇒fz = - i cosh x cos y +i sinh x sin y + c ∵ cosh iy = cos y & sinh iy =i sin y ⇒fz = - i cosh x cos y - i2 sinh x sin y + c ⇒fz = sinh x sin y - i cosh x cos y + c So, harmonic conjugate is, vx,y = - cosh x cos y + c