Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Winter-2019 | 26-11-2019

Q5) (c)

A string of length L = π has its ends fixed at x = 0 and x = π. At time t = 0, the string is given a slope defined by f(x) = 50x (π - x), then it is released. Find the deflection of the string at any time t.


→ We know that, the solution of heat equation  2u t2 = c2 2u x2 is given by
 
ux,t = n=1 Bn sin nπxL  en2π2ktL2
 
Using ux,0 = sin L, we get
 
ux,0 = n=1Bn sin  nπx L
 
sin L = B1 sin   L + B2 sin  2 L + B3 sin  3 L + ...
 
B1 = 1, B2 = 0, + B3  = 0, ...
 
So, the solution is
 
ux,t = sin πxL  e π2kt L2