Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Winter-2019 | 26-11-2019

Q4) (b)

Solve px + qy = pq using Charpit's method.

 px + qy - pq = 0 -----1
 
f = px + qy - pq
 
Auxiliary equation:
 
dp fx + p fz  = dq fy + q fz  = dz -p fp - q fq  = dx -fp = dy -fq
 
dp p  = dq q  = dz -px - q - qy - p  = dx -x - q  = dy -y - p 
 
dp p  = dq q   &  dz = p dx + q dy -----A
 
 dp p  = dq q   1 p dp =1 q dq  ln p = ln q + ln a 
 
p = q a -----2
 
→ By [1] and [2], We have
 
px + qy - pq = 0  qax + qy - qaq = 0  ax + y - aq = 0
 
 q =  ax + y a 
 
→ By [2], We have
 
 p = ax + y 
 
→ By 2nd  equation of [A], We have
 
dz = ax + y dx +  ax + y a dy
 
1 ax + y dz = dx +  1 a dy
 
1 ax + y dz = dx +  1 a dy
 
lnax + y = x +  y a + b