∎ px + qy - pq = 0 -----1 ⇒f = px + qy - pq Auxiliary equation: dp fx + p fz = dq fy + q fz = dz -p fp - q fq = dx -fp = dy -fq ⇒dp p = dq q = dz -px - q - qy - p = dx -x - q = dy -y - p ⇒dp p = dq q & dz = p dx + q dy -----A ∎ dp p = dq q ⇒ ∫1 p dp =∫1 q dq ⇒ ln p = ln q + ln a ⇒p = q a -----2 → By [1] and [2], We have px + qy - pq = 0 ⇒ qax + qy - qaq = 0 ⇒ ax + y - aq = 0 ⇒ q = ax + y a → By [2], We have ⇒ p = ax + y → By 2nd equation of [A], We have ⇒dz = ax + y dx + ax + y a dy ⇒1 ax + y dz = dx + 1 a dy ⇒∫1 ax + y dz = ∫dx + ∫ 1 a dy ⇒lnax + y = x + y a + b