Complex Variables and Partial Differential Equations (3130005)

BE | Semester-3   Winter-2019 | 26-11-2019

Q4) (c)

Solve : u t  = k 2u x2  for the condition of heat along rod without radiation subject to the conditions i u t  = 0 for x = 0 and x = L & ii u = Lx - x2 at t = 0 for all x.

Solution of heat equation:
 
ux,t = n=1 Bn sinnπxL e- n2π2ktL2
 
Bn = 2 L  0Lfx sinnπxL dx
 
Bn = 2 L  0LLx - x2 sinnπxL dx
 
Bn = 2 L  Lx - x2- cosnπxL  L - L - 2x- sinnπxL n2π2 L2 + - 2cosnπxL n3π3 L30L
 
Bn = 2 L  -2L3n3π3 cos  + 2L3n3π3 = = 2 L  × 2L3n3π31- cos 
 
Bn = 4L2n3π31 - -1n
 
Solution:
 
ux,t = n=1 Bn sinnπxL e- n2π2ktL2
 
ux,t = n=1 4L2n3π31 - -1n sinnπxL e- n2π2ktL2