I = ∫0∞ dx x2 + 12 = 1 2 ∫0∞ dx x2 + 12 = 1 2 ∫C dz z2 + 12 -----1 Where, C : Upper half of | z | = R . Let, fz = 1 z2 + 12 = 1 z + i2 z - i2 ⇒ z0 = i is pole of order n = 2 in C. Resfz, z0 = 1n-1 ! limz→z0 dn-1dzn-1 z - z0n fz Resfz, z0 = 11 ! limz→i ddz z - i2 1 z + i2 z - i2 = limz→i ddz 1 z + i2 Resfz, z0 = limz→i -2 z + i3 = -2 2i3 = 2 8i = 1 4i By [ 1 ] and residue theorem, We have I = 1 2 2πi sum of residue I = 1 2 2πi 1 4i I = π 2