Here, z = t + i t2 -----(1) ⇒x + i y = t + i t2 ⇒x = t & y = t2 ⇒dx = dt & dy = 2 t dt Now, dz = dx + i dy ⇒dz = dt + i 2t dt ⇒dz = 1 + i 2t dt Limit of Integration If z = 0 then by 1, t = 0 If z = 2 + 4 i then by 1, t = 2 ⇒t : 0 to 2 ∫02+4iRez dz = ∫02+4ix dz = ∫02t 1 + i 2t dt = ∫02t + i 2t2 dt = t2 2 + i 2t3 302 = 2 + i 16 3