→ Let, ux,y = Xx · Yy = X · Y ⇒∂2u∂x2 = uxx = X'' · Y & ∂u∂y = uy = X · Y' → Now, uxx = 9uy ⇒ X'' · Y = 9X · Y' → Dividing by X · Y both the sides, ⇒ X'' · Y X · Y = 9 X · Y' X · Y ⇒ X'' X = 9 Y' Y = K Consider, K>0 ⇒ X'' X = K & 9 Y' Y = K ∎ X'' X = K ⇒X'' - KX = 0 → Auxiliary equation is m2 - K = 0 ⇒ m = ± K ⇒ X = c1 eK + c2 e-K ∎ Y' Y = K ⇒ 1 YdYdy = K 9 ⇒ 1 YdY = K 9 dy ⇒ ∫ 1 YdY = ∫ K 9 dy ⇒ log Y = Ky 9 + C ⇒Y = e Ky 9 + C ⇒Y = c3 e Ky 9 Solution: ux,y = X · Y = c1 eK + c2 e-K c3 e Ky 9